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Background Estimation Obsolete
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Inclusive ● ○

Abort gap ○

Signal ●

Previous background estimation by missing mass

• Collimator window limited vertex position

• Different methods had similar shape

In 2017

• No collimator windows

• Correlation between missing mass and 
detector position much weaker

• Also significant contribution from opposite 
beam, possibly with residual target polarization

Elastic signal also present in “abort gap”
(should be linear around Δ𝑡 ≈ 0)
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Target Size & Detector Acceptance
Toy model: atomic and molecular target size

Completely elastic kinematics
Same vertical scale
≈ 10−3 suppressed
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Kinematics & Detector Acceptance 
strip 1 strip 3 strip 5 strip 7 strip 9

inclusive

abort gap
YELLOW

abort gap
BLUE

• significant contribution from opposite beam

• potentially with flipped target asymmetry
(*) not the same z-scales (linear)
opposite beam fraction similar to previous slide
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Asymmetries: Target & Beam
Beam and target asymmetries as function of energy

• Full run 2017 data

• Missing mass not useful for estimation of background (elastic recoil with shifted vertex)

• Non-zero background asymmetry from opposite beam

• Negligible effect on determination of beam polarization

signal: Δ𝑚𝑚𝑖𝑠𝑠 < 60 MeV/c2

background: Δ𝑚𝑚𝑖𝑠𝑠 > 120 MeV/c2

leak through from 𝛼-source
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Effect of Background Asymmetries
Difference of target asymmetries for different missing mass cuts

• Significantly non-zero (> 5 𝜎)

• Small (compared to a signal of ≈ 4%)

RHICf not shown
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Bunch Profile

1.5 < 𝑇𝑅 < 7.0 MeV

|Δ𝑡| < 6.0 ns

|Δ𝑚𝑚𝑖𝑠𝑠| < 60 MeV/c2

• Small differences between 
inclusive and clean 
asymmetries

• Consistent beam 
polarization measurement

• Longitudinal polarization 
profile (target asymmetry 
flat)

• Wider time of flight 
window for polarization 
determination, 6.0 ns

• Include longitudinal profile 
in luminosity weighting?
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Final Beam Polarizations
Compare fill by fill ratio of asymmetries with mean target asymmetry

• No background correction

• Blue target asymmetry has slightly elevated 𝜒2

Updated numbers for jet polarization and molecular fraction
𝑃𝐵𝑒𝑎𝑚 = −

𝜖𝐵𝑒𝑎𝑚
𝜖𝐽𝑒𝑡

𝑃𝐽𝑒𝑡

1.5 < 𝑇𝑅 < 7.0 MeV
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Comparison with Online Results
Fairly large variations from fill to fill

• Masking of noisy channels & Carbon movement

• Wider window for time of flight (5.0 → 6.0 ns)

• Mean shift less than 1% (𝜎 ≈ 0.3%)

𝚫𝑷 = −𝟎. 𝟔%

𝚫𝑷 = 𝟎. 𝟎%
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Summary / Conclusion
o Offline detector alignment / beam angle

o Masking of noisy channels

o Masking of Carbon target movements (𝑡𝑅 < 10 rev)

o Punch through particles removed

o Check of stability of target asymmetries (and background)

o Final beam polarizations determined with

▪ 1.5 < 𝑇_𝑅 < 7.0 MeV

▪ Δ𝑚𝑚𝑖𝑠𝑠 < 60 MeV/c2

▪ Δ𝑡 < 6.0 ns

o No background correction

o 𝑃𝐽𝑒𝑡 = 95.7%

o 𝑅𝐻2 = 0.6%

I can try a different approach for 
unpolarized background 
correction if we are interested in 
the physics observable AN as such. 
Otherwise, for the beam 
polarization, the current method 
is sufficient.
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…backup
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Rates, Events & Fill Length

RHICfdynamic 𝛽∗ squeeze
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Asymmetries per Fill
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Displaced Vertex
o Holding field extends comfortably far longitudinally

o Detector range is ±5 cm

o Jet target size is less than 1 cm

magnetic holding field

𝑚𝑚𝑖𝑠𝑠
2 = 𝑚𝑝

2 − 2 𝑚𝑝 + 𝑝𝑏𝑒𝑎𝑚 𝑇𝑅 + 2𝑝𝑏𝑒𝑎𝑚 2𝑚𝑝𝑇𝑅 sin 𝛼

𝑚𝑚𝑖𝑠𝑠
2 = 𝑚𝑝

2 −
4𝑚𝑝𝑝𝐵

2

𝑚𝑝 + 𝑝𝐵
(sin2 𝛼′ − sin 𝛼′ sin 𝛼)

𝛼: detector
𝛼′: physics (elastic recoil)

sin 𝛼 =
𝑧

𝑧2 + 𝑑2(*) This is for 𝑝𝑏𝑒𝑎𝑚 = 100 GeV/c.
The mass difference scales with 𝑝𝐵𝑒𝑎𝑚!
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Collision Background

o p+p at 𝑠 = 21.6 GeV

o PYTHIA 6.4.28, Perugia 0
▪ QCD 2 → 2

▪ Elastic

▪ Diffractive

o Prompt background

▪ pions / photons up to a few GeV

▪ covering whole detector (down- & upstream)

▪ target asymmetries
suppressed from both
beams


